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LETTER TO THE EDITOR 

A Toeplitz representation for repulsive systems 

Asher Baram 
Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel 

Received 13 September 1982 

Abstract. A new method is presented for the calculation of thermodynamic properties 
of ensembles of particles interacting via repulsive forces. A tridiagonal matrix representa- 
tion is constructed in terms of the cluster integrals. Its asymptotic form is utilised to 
obtain very good numerical estimates of the thermodynamic properties. Moreover, it is 
shown that the fluid branch may terminate at a critical activity z , ,  which is identical to 
the activity at the fluid-solid transition. A relation is found between z ,  and the radius of 
convergence of the activity series via the asymptotic matrix elements. 

Much evidence points to the fact that the structure of a liquid is determined primarily 
by the short-range repulsive forces. The longer-range attractive part of the potential 
is relatively weak and, as far as the structure is concerned, can be treated as a 
perturbation (Barker and Henderson 1976). A variety of continuum fluid models, 
and less realistic but mathematically simpler lattice models, are available for studying 
the effects of the repulsive forces on the equations of state and in particular on the 
properties of the fluid-solid melting transition. All the information about the fluid 
phase is contained in the well known Mayer expansion of the grand partition function 
in powers of the activity z .  The pressure is given by the standard relation 

where p = l / k T  and the 61 are the well known cluster integrals (cluster sums for lattice 
models) with 61 = 1. The number density follows from (1) as 

For all repulsive potentials the coefficients b1 alternate regularly in sign and increase 
rapidly in magnitude (Groeneveld 1962). This indicates the existence of a non-physical 
singularity on the negative z axis close to the origin. The physically relevant region 
is far outside the radii of convergence of the low-density series, and it is usually fitted 
using Pad6 approximants (Gaunt and Fisher 1965, Baxter et a1 1980) or Levin 
approximants (Baram and Luban 1979, 1982). In all cases the series are represented 
in terms of a large number of poles on the negative z axis, suggesting a branch cut 
on part of the negative z axis. However, none of the approximants exhibit physically 
relevant poles on or near the positive real z axis. 

In this letter we use a matrix representation whose elements are determined by 
the cluster integrals to obtain simple expressions which are good numerical estimates 
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of the thermodynamic properties of the fluid branch. These expressions exhibit, in 
the majority of the cases, square-root-like singularities on the positive real z axis, 
which define the domain of existence of the fluid phase. Consider the symmetric 
tridiagonal matrix R defined by the requirement 

(R"-')II  = IbnI.  (3) 

P p ( z )  = [ l ( l / z ) + R l ; 1 '  (4) 

(Rn-') l l  =nib,/ ( 5 )  

p ( z ) = [ l ( l / z ) + R ] ; : .  (6) 

Then the pressure is given by 

where 1 is the infinite unit matrix. Similarly a is defined by the relation 

and the density is given by 

It has been shown by Gordon (1968) that for non-decreasing functions of z the matrix 
elements of the corresponding matrices are non-negative. As a result a sequence of 
even and odd truncations of the matrices provides a sequence of successively improving 
lower and upper bounds respectively for these functions. The nth even truncation is 
obtained by setting Rn,,+l = Rn+l,, = 0 and then inverting the resulting finite n x n 
matrix, based on the first 2n cluster integrals. The nth odd truncation corresponds 
to the solution of the same n x n matrix but with R,, replaced by the finite continued 
fraction 

RZ,-1,n 

R i - 2 , n - l  
Rn-1,n -1  - 

~ 2 , - 3 , n - 2  

Rn-3,,-3-. . . '  Rn-~,n - 2  - 

Here the matrix elements depend on the first (2n - 1) cluster integrals. The first few 
approximants may be easily derived to give 

where 

Similar expressions may be derived for p ( z ) .  At the low-density limit the approximants 
converge smoothly and rapidly as n increases. However, for finite n and large enough 
z the lower bound converges to a constant, while the upper bound is of the form z/cl 
where c1 is a constant. Better approximations for the high-activity regime require 
some knowledge about the asymptotic properties of the representation matrices. It 
seems that for repulsive systems the matrix elements converge to constants along the 
diagonals (see tables 1 and 2). Using this property we partition each of the infinite 
matrices into two submatrices. A finite no X no submatrix is coupled to an infinite 
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Table 1. Matrix elements of R for various models. Uncertainties in last digits of B and 
A for the simple cubic model, due to uncertainties in z,, are shown in parentheses. 

Modelt 

HSL HHL SCL 

RI1 2.5 3.5 
RI2 2.0207 2.6615 
R22 3.9694 5.2647 
R23 2.0715 2.7426 
R33 4.1008 5.4274 
R34 2.0861 2.7596 
R44 4.1340 5.4789 
Rq5 2.0942 2.7660 
R5j 4.1453 5.5018 

R.56 4.1485 5.5138 
R.57 2.104 2.7708 
R77 4.1468 5.5208 

Res 5.5251 
R 89 2.7729 
R 99 5.5279 

Exact asymptotic values 
R,, 4.0559 5.50 

R56 2.0994 2.7691 

R78 2.1087 2.7720 

Rn,"+l 2.1597 2.7951 

3.5 
3.0139 
6.1972 
3.2666 
6.4619 
3.3299 
6.5364 
3.3639 
6.5446 
3.3963 

6.26 (3) 
3.60 (1) 

Gaussian Gaussian 
~ ~ d = 1  PHS d = l  d = 3  

1 .o 2.0 1 .o 1.0 
0.7071 1.5811 0.7842 0.9336 
1.3333 3.1556 1.4916 2.0401 
0.6872 1.6392 0.7639 1.068 1 
1.3490 3.2539 1.5058 2.1527 
0.6832 1.6508 0.7604 1.0932 
1.3537 
0.6817 
1.3557 
0.6810 
1.3568 
0.6806 
1.3574 
0.6803 
1.3578 
0.6801 
1.3581 

l e =  1.3591 
ae = 0.6796 

t HSL, hard-square lattice; HHL, hard-hexagon lattice; SCL, simple cubic lattice; HL, hard lines; PHS, 
parallel hard squares. 

tridiagonal Toeplitz matrix with B and A as constant diagonal and off-diagonal 
elements respectively. (A discussion of Toeplitz matrices and determinants is given 
by Grenander and Szego (1958).) The upper submatrix contains the exact contribution 
of a group of 2no particles to the thermodynamic functions. The infinite Toeplitz tail 
approximates the contribution of the infinite system to the macroscopic observables. 
The infinite tail can be handled easily and its net effect is to add to R,,,, (the last 
element of the exact submatrix) the correction term Ag(z) ,  where 

is the positive root of the characteristic quadratic equation 

A g 2 ( z ) + ( B  + z - ' ) g ( z ) + A  = O .  

At the low-density limit g(z) vanishes like z ,  and the contribution of the infinite tail 
is negligible. The macroscopic observables are completely determined at this limit by 
a finite group of particles. For higher activity values the correction term becomes 
significant, and the properties of the system depend on the uniform tail. For the case 
B < 2A the square root term in g ( z )  vanishes for zC fulfilling the equation 

l / z C = 2 A - B .  (9)  
For z > zc  g ( z )  and the resulting thermodynamic functions become complex. Thus 
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Table 2. As in table 1 but for elements of I?. 

Modelt 
~~~~ ~ ~ 

Gaussian Gaussian 
HSL HHL SCL ~ ~ d = 1  PHS d = l  d = 3  

RI1 5.0 7 .O 
R1Z 2.4495 3.0 
R2Z 4.0 5.5556 
R23 2.1985 2.8523 
R33 4.1379 5.5067 

R44 4.1237 5.4917 

R55 4.0881 5.4877 
R56 2.1591 2.8124 
R.56 4.0749 5.4889 

R77 4.0742 5.4929 
R78 2.1545 2.8035 
R88 5.4979 
Rag 2.7995 
R 99 5.5029 

Exact asymptotic values 
R,, 4.0559 5 . 5  
R,,,,,+I 2.1597 2.7951 

R34 2.1438 2.8280 

R45 2.1522 2.8187 

R67 2.1596 2.8079 

7.0 
3.8730 
6.5333 
3.5377 
6.4873 
3.5304 
6.4167 
3.5462 
6.3483 
3.5701 

6.26 (3) 
3.60 (1) 

2.0 4.0 2.0 2.0 
0.7071 1.8708 0.9194 1.2709 
1.3333 3.3016 1.4310 2.2453 
0.6872 1.7102 0.7715 1.1487 
1.3490 3.3151 1.4999 2.2322 
0.6832 1.6825 0.7620 1.1292 
1.3537 
0.6817 
1.3557 
0.6810 
1.3568 
0.6806 
1.3574 
0.6803 
1.3578 
0.6801 
1.3581 

$e = 1.3591 
:e = 0.6796 

t HSL, hard square on lattice; HHL, hard hexagons on lattice; SCL, simple cubic lattice; HL, hard lines; 
PHS, parallel hard squares. 

the fluid phase terminates at z c .  For the case B 3 2 A  the grand partition function 
and its logarithm are analytic for all z >0, and the fluid regime exists in the entire 
physical region. On the negative real axis the square root term always vanishes at 
-zo defined by the equality 

l / z , = 2 A + B .  (10) 
Obviously z o  < zc and therefore this non-physical singularity determines the radii of 
convergence of the series, and the asymptotic form of the cluster integrals 

Ibn+l/b,l=(2A + B ) ( l + O ( L ' ) ) .  (11)  
The functions are complex in the region -CO<Z < -20 provided 2A >B, or in the 
region (2A -B)-' < z < -zo for B > 2A. This complex domain, common to all repul- 
sive systems, is analogous to the branch cut found to extend along the negative real 
axis from -zo,  for one-dimensional hard lines and the repulsive van der Waals gas 
(Hiis Hauge and Hemmer 1963). Numerical analysis strongly suggests that such a 
branch cut is a characteristic feature of repulsive models (Gaunt and Fisher 1965). 

It is interesting to compare the results of the Toeplitz representation with those 
obtained from the few models solved exactly. The continuum one-dimensional hard- 
lines model obeys the well known equations of state 

P P  = p l ( l  - P )  PF exP(bF) = z (12) 
where the hard-core diameter U = 1. The positive real z axis is free of singularities; 
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the closest singularity is a square-root-type branch point at -zo  = -l /e,  Using 
equations (9) and (10) one obtains B = 2A =$e = 1.3591. These ‘exact asymptotic 
values’ exhibit the fast convergence of the matrix elements to their limiting constant 
values (see tables 1 and 2). In figure 1 the Toeplitz approximation, based on a 3 x 3 
finite matrix and the exact asymptotic values, to the number density p ( z )  is compared 
with the exact solution of equations (12). Up to z = 25 the two curves are indistinguish- 
able; for higher z values the approximation still provides very good numerical esti- 
mates. Upper and lower bounds based on the same finite matrix provide good 
numerical estimates up to z - 6. 

P 

Figure 1. One-dimensional hard lines. Plot of the number density against In z .  Full curve, 
Toeplitz approximation based on a 3 x 3 matrix and B = 2A =$e; broken curve, exact 
solution; curve U, upper bound based on 3 X 3 matrix; curve L, lower bound based on 
five coefficients. 

The hard-hexagon lattice model has been solved rigorously by Baxter (1980). The 
model has a critical point corresponding to a fluid-solid transition at z c  = $( 11 + SA) = 
11.09017 with a critical exponent a = f. The radius of convergence of the activity series 
is zo = l / zc  = 0.090169, due to a ;-type singularity located at -20. Employing these 
values one obtainsB = f(zc- l /zc) = 5.50 A = a(zC+ l /zc) = 2.7951 in close agreement 
with the matrix elements of R. Thus the termination point of the fluid branch may 
be identified with the fluid-solid critical point. The pressure is less sensitive than p ( z )  
to zc ,  since its singular term is masked by the leading linear term in the vicinity of zc .  
Therefore the elements of R predict values for zc which are too high. Nevertheless 
the numerical estimations to the pressure are highly accurate. In figure 2 an approxima- 
tion to p p ( z ) ,  based on a 3 x 3 exact matrix and a Toeplitz correction with A = RS4,  
B = R44, is shown and. compared with the exact solution. Knowledge of the first eight 
cluster integrals is required in order to construct this approximation. Although the 
hard-square lattice model has not been solved rigorously the locations of its characteris- 
tic singularities are known to high accuracy. Baxter et al (1980) obtained the first 24 
terms of the high-density series in terms of l / z  for the order parameter, and from 



L24 Letter to the Editor 

v 
0 5 10 z, 

z 

Figure 2. Hard-hexagon lattice model: plot of pressure against activity. Full curve, Toeplitz 
approximation based on 3 x 3 matrix and B = R44r A = R34; broken curve, exact solution; 
curve U, upper bound derived using six coefficients; curve L, lower bound derived using 
five coefficients. 

these estimated z, to be 3.7962(1). Similarly zo is estimated to be 0.1?94(1), resulting 
in A = 2.1597 and B = 4.0559, again in very good agreement with the elements of I?. 

The Toeplitz assumption results in universal, dimensionality-independent, critical 
exponents. More precisely, near the fluid-solid transition (if it exists) the number 
density is given by 

p ( z )  = pc-c(zc-z)1/2 (13) 
while the compressibility diverges as (z, - z)-l’*. Near the non-physical singularity at 
-zo the density diverges as (zo + z)-l/*. This classical-like result is wrong; the charac- 
teristic critical exponent a! is model dependent at the freezing transition (Baxter 1980). 
Similarly the divergence of the density at 20 is model dependent. Thus the exact 
critical exponents depend on the small deviations from the constant asymptotic values, 
although their effect on the isotherms and the location of the critical points is negligible. 

The particle-hole symmetry may be used to derive high-density expansions in 
terms of l / z  about closest packing for lattice models. (It is not known how to obtain 
the analogous expansions for continuum models.) Unfortunately the signs of the 
coefficients do not behave regularly, and it is impossible to apply the present method. 
The hard-square lattice is exceptional because the coefficients of its expansions 
alternate in sign. Thus it is possible to derive the sequence of bounds, which are very 
effective since the radius of convergence is of the order of l /zc.  However, the matrix 
elements do not exhibit any Toeplitz form. 

Finally it should be remarked that a very similar asymptotic convergence to constant 
terms occurs in rotational relaxation processes (Baram 1980). The spectral lineshape 
function is given by an equation similar to equation (4), where R is the relaxation 
matrix and l / r  is the frequency variable. The elements of the relaxation matrix are 
related to the dlebsch-Gordan coefficients that tend asymptotically to their classical 
constant limiting values. Thus the relaxation matrix contains a small finite submatrix 
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corresponding to low rotational states, coupled to an infinite classical Toeplitz tail. 
At the fast-motion limit (analogous to the low-density limit) the tail is irrelevant, 
while at the slow-motion limit it determines the characteristic features of the spectral 
lineshape function, 
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